Vascular Medicine Institute
University of Pittsburgh
BST E1240
200 Lothrop Street
Pittsburgh, PA 15261
Phone: 412-383-5853
Fax: 412-648-5980

Partha Dutta, DVM, PhD


partha dutta dvm phd


Partha Dutta, DVM, PhD

Assistant Professor of Medicine,
Division of Cardiology

1720.1 BST
200 Lothrop Street
Pittsburgh, PA 15261

Phone: 412-383-7277
Fax: 412-624-9160
Email: duttapa@pitt.edu

Assistant: Diane Margaria
Phone: 412-383-6030
Email: margariad@upmc.edu

Dutta Lab


Education and Training

B.V.Sc & A.H- West Bengal University of Animal and Fishery Sciences, India, 2003

MS- Wichita State University, KS, USA, 2006

PhD- University of Wisconsin-Madison, WI, USA, 2010

Postdoctoral training- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 2013

Instructor- Harvard Medical School, 2015

Research Interests

Role of inflammation in cardiovascular diseases

Cardiovascular disease is the leading cause of death in developed countries. Inflammation aggravates outcome of cardiovascular disease including atherosclerosis and infarct healing after myocardial infarction (MI) (Leuschner* and Dutta* et al., Nature Biotechnology, 2011). During progression of atherosclerosis, myeloid cells destabilize lipid-rich plaques in the arterial wall and cause their rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons.


Fig 1: Increased inflammation in the aortic root measure by FMT-CT imaging
(Dutta et al., Nature, 2012)


We showed that the systemic response to ischemic injury aggravates chronic atherosclerosis (Dutta et al., Nature, 2012). After myocardial infarction or stroke, Apoe-/- mice developed larger atherosclerotic lesions with a more advanced morphology and inflammation (Figure 1). This disease acceleration persisted over many weeks and was associated with markedly increased monocyte recruitment.


Fig. 2: Schematic diagram depicting possible mechanism of how bone marrow HSC can influence healing of the myocardium after MI (Dutta et al., Cell Stem Cell, 2015).


Activation of hematopoietic stem cells after myocardial infarction

Hematopoietic stem cells get activated after acute or chronic inflammation and give rise to exaggerated myelopoiesis (Figure 2). However, most hematopoietic stem cells (HSC) are quiescent, and it is currently unknown whether they respond to ischemic organ injury. We identified a CCR2+ HSC subset, which has fourfold higher proliferative rate than CCR2- HSC, as the most upstream contributor to myelopoiesis after myocardial infarction (Figure 3) (Dutta et al., Cell Stem Cell, 2015). CCR2+ HSC display bias towards the myeloid lineage and dominate the migratory HSC population after myocardial infarction and in steady-state. The myeloid translocation gene 16 (Mtg16) regulates the emergence of CCR2+ HSC from CCR2- HSC. These data shed new light on the regulation of emergency hematopoiesis after ischemic injury and identify novel therapeutic targets to modulate leukocyte output after myocardial infarction.


Fig. 3: Flow cytometric gating strategy for CCR2+ HSC and proliferation of the HSC subsets after myocardial infarction (Dutta et al., Cell Stem Cell, 2015).


Additionally, we found that myocardial infarction drives splenic hematopoietic stem cells into the cell cycle resulting in production of myeloid cells at the extramedullary site (Dutta et al., Journal of Experimental Medicine, 2015). Moreover, splenic HSC are retained by VCAM-1+ splenic macrophages (Figure 4).


Content on this page requires a newer version of Adobe Flash Player.

Get Adobe Flash player


Fig. 4: Interaction between splenic macrophages (red) and hematopoietic stem cells (green)
(Dutta et al., Journal of Experimental Medicine, 2015).


Selected Publications

Sager HB*, Dutta P*, Dahlman JE, Borodovsky A, Fitzgerald K, Heidt T, Courties G, Wojtkiewicz GR, Iwamoto Y, Sebas M, Khan OF, Xing Y, Shaw TE, Libby P, Swirski FK, Langer R, Weissleder R, Anderson DG, Nahrendorf M. 2016. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Science Translational Medicine.PMID: 27280687. * Equal contribution authors

Dutta P, Sager H, Stengel K, Naxerova K,……Libby P, Hiebert S, Scadden D, Swirski FK, Weissleder R, Nahrendorf M. 2015. Myocardial infarction activates CCR2+ hematopoietic stem cells. Cell Stem Cell 16: 477-87.
Correspondence: Partha Dutta (duttapa@pitt.edu) and Matthias Nahrendorf (mnahrendorf@mgh.harvard.edu)

Dutta, P., F. F. Hoyer, L. S. Grigoryeva, H. B. Sager, F. Leuschner, G. Courties, A. Borodovsky, T. Novobrantseva, V. M. Ruda, K. Fitzgerald, Y. Iwamoto, G. Wojtkiewicz, Y. Sun, N. Da Silva, P. Libby, D. G. Anderson, F. K. Swirski, R. Weissleder, and M. Nahrendorf. 2015. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1 in atherosclerosis. Journal of Experimental Medicine 212: 497-512.
Correspondence: Partha Dutta (duttapa@pitt.edu) and Matthias Nahrendorf (mnahrendorf@mgh.harvard.edu)

Sager HB, T. Heidt, M. Hulsmans, P. Dutta, G. Courties, M. Sebas, G. R. Wojtkiesicz, B. Tricot, Y. Iwamoto, Y. Sun, R. Weissleder, P. Libby, F.K. Swirski, M. Nahrendorf. 2015. Targeting interleukin-1beta reduces leukocyte production after acute myocardial infarction. Circulation.

Dutta, P., G. Courties, Y. Wei, F. Leuschner, R. Gorbatov, C. S. Robbins, Y. Iwamoto, B. Thompson, A. L. Carlson, T. Heidt, M. D. Majmudar, F. Lasitschka, M. Etzrodt, P. Waterman, M. T. Waring, A. T. Chicoine, A. M. van der Laan, H. W. Niessen, J. J. Piek, B. B. Rubin, J. Butany, J. R. Stone, H. A. Katus, S. A. Murphy, D. A. Morrow, M. S. Sabatine, C. Vinegoni, M. A. Moskowitz, M. J. Pittet, P. Libby, C. P. Lin, F. K. Swirski, R. Weissleder, and M. Nahrendorf. 2012. Myocardial infarction accelerates atherosclerosis. Nature 487: 325-329.

Heidt, T., H. B. Sager, G. Courties, P. Dutta, Y. Iwamoto, A. Zaltsman, C. von Zur Muhlen, C. Bode, G. L. Fricchione, J. Denninger, C. P. Lin, C. Vinegoni, P. Libby, F. K. Swirski, R. Weissleder, and M. Nahrendorf. 2014. Chronic variable stress activates hematopoietic stem cells. Nature Medicine 20: 754-758.

Leuschner, F*., P. Dutta*, R. Gorbatov, T. I. Novobrantseva, J. S. Donahoe, G. Courties, K. M. Lee, J. I. Kim, J. F. Markmann, B. Marinelli, P. Panizzi, W. W. Lee, Y. Iwamoto, S. Milstein, H. Epstein-Barash, W. Cantley, J. Wong, V. Cortez-Retamozo, A. Newton, K. Love, P. Libby, M. J. Pittet, F. K. Swirski, V. Koteliansky, R. Langer, R. Weissleder, D. G. Anderson, and M. Nahrendorf. 2011. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology 29: 1005-1010. * Equal contribution authors

Dutta, P., M. Dart, D. A. Roenneburg, J. R. Torrealba, and W. J. Burlingham. 2011. Pretransplant immune-regulation predicts allograft tolerance. Am J Transplant 11: 1296-1301.

Dutta, P., M. Molitor-Dart, J. L. Bobadilla, D. A. Roenneburg, Z. Yan, J. R. Torrealba, and W. J. Burlingham. 2009. Microchimerism is strongly correlated with tolerance to noninherited maternal antigens in mice. Blood 114: 3578-3587.

Pubmed link